Influence of Body Composition on Bone Mineral Content in Elderly Women

A Preliminary Report

G. BEDOGNI, a,b A. PIETROBELLI, a S. B. HEYMSFIELD, c C. ROUNTAUROLI, a A. BORGHI, a F. FERRARI, a N. BATTISTINI, a AND G. SALVIOLI a

^aDepartments of Biomedical Sciences (Human Nutrition Chair) and Internal Medicine (Geriatrics Chair and Clinical Medicine II), Modena and Reggio Emilia University, Italy ^cObesity Research Center, Weight Control Unit, St. Luke's/Roosevelt Hospital, Columbia University, New York, New York 10025, USA

INTRODUCTION

The bone mineral content (BMC) of the body has been shown to be influenced by both lean tissue mass (LTM) and fat mass (FM) in adults and children. ^{1,2} However, fewer data are available for elderly people. In this study we tested whether LTM and FM are associated with BMC in a large sample of elderly and young women.

SUBJECTS AND METHODS

The sample consisted of 2051 w omen recruited at the Geriatric Ev aluation and Research Center of Modena University during a larger study on nutritional status and osteoporosis. All women were free of disease other than (primary) osteoporosis. LTM, FM, and BMC were measured by dual-energy X-ray absorptiometry (DXA).³

RESULTS

We studied 713 elderly (>65 years old) and 1338 young (\leq 65 years old) women. Table 1 gives their characteristics. (No difference was seen in BMC, in bone mineral density, and in the relationships between BMC, L TM, and FM in w omen taking estrogens or other antiosteoporotic drugs vs. those not taking them [p = ns, ANOVA and ANCOVA]). Body weight (Wt) and height were signif icantly lower (p < 0.05 and p < 0.0001, respectively) in elderly versus young women, whereas BMI was similar. FM was similar, whereas LTM was lower (p < 0.001) in elderly versus young women. However, when standardized on DXA-determined body mass, both L TM and FM were similar between groups (p = ns; data not sho wn). BMC was significantly lower in elderly versus young women (p < 0.0001). Log-transformed (lt) age

bedogni.giorgio@unimo.it

^bAddress for correspondence: G. Bedogni, Human Nutrition Chair, Department of Biomedical Sciences, University of Modena and Reggio Emilia, Via Campi 287, 41100 Modena, Italy. Voice: 039-059-428232; fax: 039-059-428236.

TABLE 1. Characteristics of the study subjects

Elderly $(n = 713)$	Young $(n = 1338)$
$70.8 \pm 4.1***$	58.7 ± 4.8
$64.1 \pm 9.4*$	65.0 ± 9.7
$1.56 \pm 0.63***$	1.58 ± 0.62
26.3 ± 3.6	26.1 ± 3.6
23.5 ± 6.7	23.7 ± 6.6
$37.9 \pm 3.9**$	38.6 ± 4.2
2.0^{a***}	2.2^{a}
	$(n = 713)$ $70.8 \pm 4.1***$ $64.1 \pm 9.4*$ $1.56 \pm 0.63***$ 26.3 ± 3.6 23.5 ± 6.7 $37.9 \pm 3.9**$

Note: Data are given as the mean \pm SD unless stated otherwise. Terms: * p < 0.05, **p < 0.001, ***p < 0.0001 vs. young.

explained 7% of lt-BMC v ariance (p < 0.0001), 0.4% of lt-L TM variance (p < 0.005), and no variance of lt-FM in the pooled sample (p = ns; n = 2051). Lt-LTM explained 14% more of the v ariance of lt-BMC than did lt-FM (adj. $R^2 = 0.40$ vs. 0.26, p < 0.0001). However, lt-Wt was the best single predictor of BMC, explaining 44% of its v ariance (p < 0.0001). The association between lt-L TM and lt-FM explained 2% more variance of BMC compared to the model with lt-Wt alone (ad $R^2 = 0.46$, p < 0.0001). Adding age to the predicting vertical with lt-L TM and lt-FM resulted in an increase in 7% of the explained BMC variance (adj. $R^2 = 0.53$, p < 0.0001).

CONCLUSIONS

We conclude that (1) BMC is associated more with LTM than FM in both young and elderly women and (2) there is a high une xplained variance (47%) associated with the prediction of BMC from LTM, FM, and age.

REFERENCES

- MANZONI, P. et al. 1996. Influence of body composition on bone mineral content in children and adolescents. Am. J. Clin. Nutr. 64: 603–607.
- KHOSLA, S. et al. 1996. Relationship between body composition and bone mass in women. J. Bone Miner. Res. 11: 857–863.
- 3. PIETROBELLI, A. *et al.* 1996. Dual-ener gy X-ray absorptiometry body composition model: review of physical concepts. Am. J. Physiol. **271:** E941–E951.

ABBREVIATIONS: BMI = body mass index; FM = fat mass; LTM = lean tissue mass; BMC = bone mineral content.

^ageometric mean.