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Abstract: The differential diagnosis of erosive osteoarthritis of the hand (EHOA) and psori-
atic arthritis (PsA) is challenging, especially considering the absence of specific diagnostic
biomarkers. The aim of the present study was to evaluate whether a pattern of microRNAs
(miRNAs) (miR-21, miR-140, miR-146a, miR-155, miR-181a, miR-223), pro-inflammatory
cytokines [interleukin (IL)-1β, IL-6, IL-17a, IL-23a, and tumor necrosis factor (TNF)-α],
and adipokines (adiponectin, chemerin, leptin, resistin, and visfatin) could help to dif-
ferentiate EHOA from PsA. Fifty patients with EHOA, fifty patients with PsA, and fifty
healthy subjects (HS) were studied. The gene expression of miRNAs and cytokines were
evaluated by real-time PCR from peripheral blood mononuclear cells and serum levels
of cytokines and adipokines were quantified by ELISA in PsA and EHOA patients and
HS. Gene expression showed the significant up-regulation of the analyzed miRNAs in
EHOA and PsA patients as compared to HS and higher miR-155 in EHOA vs. PsA patients.
The expression levels of IL-1β and IL-6 did not show any significant differences between
EHOA and PsA, while IL-17a and IL-23a were significantly up-regulated in PsA compared
to EHOA. Circulating TNF-α levels were higher in EHOA compared to PsA, while PsA
patients exhibited significantly elevated levels of IL-23a. The combination of miR-155 with
C-reactive protein enhanced the ability to differentiate EHOA from PsA, further supporting
the potential of miR-155 as a diagnostic biomarker.

Keywords: erosive osteoarthritis of the hand; psoriatic arthritis; microRNAs; cytokines;
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1. Introduction
The hand is a common site of osteoarthritis (OA) and carries a significant medical

burden, causing persistent pain and functional limitations in everyday activities, leading to
diminished quality of life [1–3]. According to the Global Burden of Disease Study, hand
osteoarthritis (HOA) represented 24% of all cases of OA in 2019, with an incidence rising
from 371 million cases in 1990 to 676 million cases in 2019 [4,5]; moreover, cases of HOA
are projected to increase by nearly 50% by 2050 [6].

Erosive osteoarthritis of the hand (EHOA) is a rare subset of HOA that affects mainly
postmenopausal middle-aged women. It is characterized by prominent signs of inflam-
mation, severe progression, and peculiar radiographic changes in the interphalangeal (IP)
joints [7–10]. It is currently debated whether EHOA is an advanced stage of classical
HOA or a separate entity with typical inflammatory characteristics that can mimic chronic
arthritis, such as psoriatic arthritis (PsA) [11,12].

PsA is a heterogeneous musculoskeletal inflammatory condition that can affect up to
30% of psoriasis patients [13]. It has various clinical features, including peripheral arthritis,
spinal spondylitis, asymmetrical synovitis, enthesitis, and dactylitis [14,15]. Such hetero-
geneity and the absence of specific biomarkers make the diagnosis of PsA difficult. The
CASPAR (Classification for Psoriatic Arthritis) criteria, which includes evidence of psoriasis
(current, personal, or family history), dactylitis, nail dystrophy, a negative rheumatoid
factor (RF), and radiographic evidence of new bone formation, is the current gold standard
for diagnosing PsA [16].

Some features of PsA are found in other chronic musculoskeletal diseases, such as
rheumatoid arthritis (RA) and EHOA, which makes it possible to delay the diagnosis and
influence the success of treatment. The differential diagnosis of PsA and EHOA is especially
challenging, considering that both conditions are characterized by bone proliferation and
inflammation in the distal IP joints, and there are no diagnostic biomarkers [17].

The past decade has seen the emergence of microRNAs (miRNAs) as potential biomark-
ers for certain rheumatic diseases [18]. MiRNAs are small non-coding RNA molecules
that control the expression of different target genes by repressing or inhibiting translation.
Mature miRNAs are produced inside the cell and exert their function within the cytoplasm,
but also by being released into the circulation and body fluids, where they regulate both
physiological and pathological processes [19,20].

Specific miRNAs have been associated with the up-regulation of several inflammatory
cytokines or degrading enzymes involved in the pathogenesis of PsA and OA [21,22].
Indeed, miRNAs have been detected in the plasma and synovial fluid of patients with PsA,
and they are considered potential diagnostic and prognostic biomarkers [23–26]. Recently,
Baloun et al. observed an elevated expression of a specific pattern of circulating miRNAs in
patients with HOA compared to healthy individuals [27]. Auroux et al. further proposed
that circulating miRNAs could serve as a diagnostic tool to distinguish EHOA from non-
erosive HOA [28]. Notably, they identified an association between the down-regulation of
miR-196a-5p and the presence of EHOA [28].

Adipokines, primarily produced by white adipose tissue, including adiponectin, leptin,
visfatin, resistin, chemerin, and omentin, play a pivotal role in the pathogenesis of inflam-
matory and degenerative musculoskeletal disorders [29–31]. Additionally, adipokines
are potential biomarkers and pharmacological targets in both PsA and HOA [32,33]. In
a previous study, we found that circulating miR-140 and leptin levels were elevated in
patients with PsA compared to those with RA [34]. Thus, miR-140 and leptin could serve
as potential biomarkers for differentiating between these two inflammatory diseases.

The aim of the present study was to evaluate whether a pattern of miRNAs, adipokines,
and pro-inflammatory cytokines could help to differentiate EHOA from PsA. In detail, we
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evaluated the expression profile of miR-21, miR-140, miR-146a, miR-155, miR-181a, and
miR-223; interleukin (IL)-1β, IL-6, IL-17a, and IL-23a; and tumor necrosis factor (TNF)-α
in peripheral blood mononuclear cells (PBMCs) of patients with EHOA, PsA, and healthy
subjects (HS). Serum levels of IL-1β, IL-6, IL-17a, IL-23a, and TNF-α and adipokines
(adiponectin, chemerin, leptin, resistin, and visfatin) were also investigated.

2. Results
2.1. Study Participants

Table 1 provides the main demographic and clinical features of the study subjects. All
EHOA patients were negative for the rheumatoid factor (RF) and anti-cyclic citrullinated
peptide antibodies (ACPAs); 6% of PsA patients had a positive RF in the absence of ACPA.
Age was significantly lower in HS than in EHOA and PsA patients, as well as in PsA vs.
EHOA patients. Low density lipoprotein (LDL) cholesterol was significantly higher in
EHOA patients compared to HS and PsA patients. Erythrocyte sedimentation rate (ESR)
and C reactive protein (CRP) were higher in PsA compared to HS and EHOA.

Table 1. Demographic and clinical features of the study subjects.

HS
(n = 50)

EHOA
(n = 50)

PsA
(n = 50)

p-Value *
HS vs. EHOA

p-Value *
EHOA vs. PsA

p-Value *
HS vs. PsA

Female sex 31 (62%) 40 (80%) 28 (56%) 0.047 0.010 0.54
Age (years) 48 (40;59) 68 (65;73) 58 (55;63) <0.001 <0.001 <0.001
Disease (months) — 96 (60;120) 72 (48;96) — 0.014 —
BMI (kg/m2) 23.8 (21.9;25.2) 24.8 (22.5;26.3) 25.0 (23.2;26.8) 0.042 0.45 0.004
Smoking 13 (26%) 4 (8%) 19 (38%) 0.017 <0.001 0.20
Hypertension 12 (24%) 24 (48%) 21 (42%) 0.012 0.55 0.056
Cardiovascular disease 10 (20%) 9 (18%) 18 (36%) 0.80 0.043 0.075
Type 2 diabetes mellitus 0 (0%) 7 (14%) 12 (24%) 0.006 0.20 <0.001
Glucose (mg/dL) 87 (78;95) 95 (88;101) 90 (85;97) 0.001 0.016 0.15
Total cholesterol (mg/dL) 180 (165;195) 210 (183;233) 182 (175;195) <0.001 <0.001 0.38
HDL cholesterol (mg/dL) 60 (52;65) 60 (51;69) 50 (42;57) 0.84 <0.001 <0.001
LDL cholesterol 99 (85;111) 140 (117;151) 105 (98;120) <0.001 <0.001 0.005
Triglycerides (mg/dL) 110 (88;134) 130 (91;156) 120 (98;138) 0.047 0.41 0.14
ESR (mm/h) 12 (8;18) 15 (9;24) 35 (25;42) 0.062 <0.001 <0.001
CRP (mg/dL) 0.1 (0.0;0.1) 0.2 (0.1;0.5) 0.9 (0.7;1.4) <0.001 <0.001 <0.001
VAS pain (0–100) — 50 (20;70) 38 (25;60) — 0.079
HAQ 0 (0;0) 1 (0;1) 1 (0;1) <0.001 0.41 <0.001
Tender joints (number) — 7 (5;8) 8 (4;12) — 0.12 —
Swollen joints (number) — 4 (2;6) 2 (1;3) — <0.001 —
Kallman score — 122 (98;150) — — — —
DAPSA-CRP — — 18 (14;29) — — —
DAS28-ESR — — 5 (4;6) — — —
PASI — — 6 (4;10) — — —

* Between-group comparisons performed with Mann–Whitney U-test for continuous variables and with Pearson’s
Chi-square test for categorical variables. Values are given as median and interquartile interval for continuous
variables and as number and proportion for discrete variables. Legend: HS = healthy subjects; EHOA = erosive
osteoarthritis of the hand; PsA = psoriatic arthritis; BMI = body mass index; ESR = erythrocyte sedimentation
rate; CRP = C-reactive protein; VAS = visual assessment scale; HAQ = Health Assessment Questionnaire;
DAPSA = Disease Activity in Psoriatic Arthritis; DAS28 = Disease Activity Score 28; PASI = Psoriasis Area
Severity Index.

A significant difference in the Health Assessment Questionnaire (HAQ) score was
detected between HS vs. EHOA patients and for HS vs. PsA patients.

2.2. MiRNAs, Cytokines, and Adipokines

Table 2 reports the gene expression of miRNAs and cytokines in PBMCs and the serum
levels of cytokines and adipokines.

Gene expression showed a significant up-regulation of the analyzed miRNAs in EHOA
and PsA patients as compared to HS. MiR-146a was significantly higher in PsA than in
EHOA patients, while MiR-21 and MiR-155 were significantly up-regulated in EHOA vs.
PsA patients. No significant differences were detected between EHOA and PsA patients
for the expression profile of the remaining miRNAs.
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The expression levels of IL-1β, IL-6, and TNF-α were similar in EHOA and PsA
patients while IL-17a and IL-23a were significantly more up-regulated in PsA than in
EHOA patients.

Serum levels of TNF-α were higher in EHOA than in PsA patients, while those of IL-
23a were higher in PsA than in EHOA patients. Circulating levels of adiponectin, chemerin,
leptin, resistin, and visfatin were significantly higher in PsA than in HS. EHOA patients
had significantly higher values of adiponectin, chemerin, and resistin compared to HS.
Leptin, resistin, and visfatin were significantly higher in PsA vs. EHOA patients.

Supplementary Figure S1 reports the association between miRNAs, cytokines, gene
expression, and serum cytokines and adipokines, as detected by Spearman’s rank
correlation coefficient.

2.3. Diagnostic Performance of miRNA and Cytokine Expression

The uni-variable logistic regression models used to evaluate the ability of miRNA and
cytokine expression to discriminate EHOA from PsA are given in Table 3.

Among the gene expression profiles, miR-21, miR-146a, miR-155, TNF-α, IL-17a, and
IL-23a were able to discriminate EHOA from PsA, with the corresponding probability
curves plotted in Figure 1. miR-155 was the expression profile most strongly associated
with EHOA vs. PsA (AIC = 89, BIC = 94, C-statistic = 0.89, and Nagelkerke R2 = 0.55),
followed by IL-23a (AIC = 117, BIC = 122, C-statistic = 0.79, and Nagelkerke R2 = 0.30) and
IL-17a (AIC = 128, BIC = 133, C-statistic = 0.74, and Nagelkerke R2 = 0.18).
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Figure 1. Probability of erosive osteoarthritis of the hand vs. psoriatic arthritis according to the
expression levels of miR-21, miR-146a, miR-155, TNF-α, IL-17a, and IL-23a. The underlying logis-
tic regression models are given in Table 3. Legend: EHOA = erosive osteoarthritis of the hand;
RE = relative expression.

The bi-variable logistic regression models used to evaluate the ability of miRNA
and cytokine expression profiles to discriminate EHOA from PsA after correction for a
known or potential confounder [sex, age, disease duration, body mass index (BMI), tender
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joints, and log-transformed CRP (lnCRP)] are given in Supplementary Table S1. As a
rule, the association of the predictor with the outcome changed little after controlling for
each confounder. Importantly, lnCRP alone was superior to most expression profiles at
discriminating EHOA from PsA (Model M8 of Supplementary Table S1). Even if miR-
155 was inferior to lnCRP according to all metrics, their combination greatly improved
the discrimination of EHOA from PsA as compared to lnCRP alone (AIC = 58 vs. 78,
BIC = 66 vs. 83, c-statistic = 0.95 vs. 0.90, Nagelkerke R2 = 0.77 vs. 0.64). The same pattern
was observed for IL-23a, and to a lesser extent for IL-17a.

2.4. Diagnostic Performance of Serum Cytokines and Adipokines

The uni-variable logistic regression models used to evaluate the ability of serum
cytokines and adipokines to discriminate EHOA from PsA are given in Table 4.

IL-6, TNF-α, IL-23a, chemerin, leptin, visfatin, and resistin were the cytokines and
adipokines associated with the outcome, with the corresponding probability curves plotted
in Figure 2. Among them, TNF-α had the strongest association with the outcome (AIC = 34,
BIC = 39, C-statistic = 0.98, and Nagelkerke R2 = 0.88), followed by leptin (AIC = 81,
BIC = 86, C-statistic = 0.91, and Nagelkerke R2 = 0.61) and visfatin (AIC = 86, BIC = 91,
C-statistic = 0.89, and Nagelkerke R2 = 0.58
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Figure 2. Probability of erosive osteoarthritis of the hand vs. psoriatic arthritis according to the serum
levels of IL-6, TNF-α, IL-23a, adiponectin, chemerin, leptin, visfatin, and resistin. The underlying
logistic regression models are given in Table 4. Legend: EHOA = erosive osteoarthritis of the hand.
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Table 2. MiRNA and cytokine expression and serum cytokines and adipokines of the study subjects.

HS
(n = 50)

EHOA
(n = 50)

PsA
(n = 50)

p-Value
HS vs. EHOA *

p-Value
EHOA vs. PsA *

p-Value
HS vs. PsA *

miR-21 (RE) 0.43 (0.27;0.81) 1.19 (0.89;1.84) 0.92 (0.57;1.28) <0.001 0.001 <0.001
miR-140 (RE) 0.73 (0.48;1.12) 1.75 (0.94;2.04) 1.55 (0.95;2.10) <0.001 0.58 <0.001
miR-146a (RE) 0.74 (0.28;0.93) 1.13 (0.75;1.98) 1.86 (1.50;2.54) <0.001 <0.001 <0.001
miR-155 (RE) 0.56 (0.30;0.75) 2.76 (2.12;3.23) 1.39 (0.92;1.84) <0.001 <0.001 <0.001
miR-181b (RE) 0.80 (0.70;0.95) 3.43 (2.54;4.07) 2.97 (2.05;4.18) <0.001 0.11 <0.001
miR-223 (RE) 1.19 (0.82;1.48) 2.30 (1.68;2.89) 2.44 (1.82;3.04) <0.001 0.67 <0.001
IL-1β (RE) 0.82 (0.42;0.98) 1.03 (0.83;1.84) 1.31 (0.92;1.76) <0.001 0.59 <0.001
IL-6 (RE) 0.31 (0.22;0.52) 1.10 (0.66;2.03) 1.58 (0.93;2.02) <0.001 0.32 <0.001
IL-17a (RE) 0.27 (0.15;0.41) 1.19 (0.89;1.93) 2.03 (1.46;2.40) <0.001 <0.001 <0.001
IL-23a (RE) 0.30 (0.18;0.52) 1.21 (0.90;2.04) 2.31 (1.80;3.24) <0.001 <0.001 <0.001
TNF-α (RE) 0.57 (0.29;0.94) 1.49 (0.90;2.02) 1.03 (0.80;1.79) <0.001 0.047 <0.001
IL1-β (pg/mL) 16.6 (12.1;23.1) 22.2 (18.4;26.9) 21.9 (16.9;27.1) <0.001 0.43 0.002
IL-6 (pg/mL) 23.4 (17.2;30.7) 94.7 (71.1;110.3) 79.6 (66.1;100.1) <0.001 0.004 <0.001
IL-17a (pg/mL) 46.3 (37.6;55.3) 70.0 (58.4;79.2) 71.8 (59.7;81.9) <0.001 0.44 <0.001
IL-23a (pg/mL) 188.5 (171.0;201.0) 230.5 (195.0;266.0) 308.0 (256.0;338.0) <0.001 <0.001 <0.001
TNF-α (pg/mL) 26.4 (20.8;31.8) 187.8 (172.3;196.9) 130.3 (122.9;141.9) <0.001 <0.001 <0.001
Adiponectin (µg/mL) 43.73 (36.13;50.54) 49.49 (43.81;58.67) 51.33 (44.58;61.17) <0.001 0.30 <0.001
Chemerin (pg/mL) 34.82 (29.29;44.55) 61.40 (54.63;83.34) 74.44 (67.44;85.96) <0.001 0.002 <0.001
Leptin (pg/mL) 1716.12 (1492.12;1834.22) 1737.39 (1260.28;2033.62) 2637.39 (2282.95;2836.6) 0.35 <0.001 <0.001
Resistin (pg/mL) 74.87 (58.14;89.13) 95.64 (79.61;112.37) 198.08 (174.09;230.83) <0.001 <0.001 <0.001
Visfatin (ng/mL) 1.88 (1.43;2.38) 1.78 (1.60;2.11) 2.95 (2.30;3.56) 0.35 <0.001 <0.001

* Between-group comparisons performed by Mann–Whitney U-test. Values are given as median and interquartile interval for continuous variables. Legend: HS = healthy subjects;
EHOA = erosive osteoarthritis of the hand; PsA = psoriatic arthritis; RE = relative expression.
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Table 3. Ability of miRNA and cytokine expression to discriminate EHOA from PsA.

M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11

miR-21 (RE) 1.26 **
[0.46, 2.06] — — — — — — — — — —

miR-140 (RE) — 0.23
[−0.36, 0.81] — — — — — — — — —

miR-146a (RE) — — −0.74 **
[−1.21, −0.26] — — — — — — — —

miR-155 (RE) — — — 2.16 ***
[1.35, 2.97] — — — — — — —

miR-181b (RE) — — — — 0.27
[−0.10, 0.63] — — — — — —

miR-223 (RE) — — — — — −0.11
[−0.60, 0.37] — — — — —

IL-1β (RE) — — — — — — −0.14
[−0.77, 0.49] — — — —

IL-6 (RE) — — — — — — — −0.11
[−0.59, 0.36] — — —

TNF-α (RE) — — — — — — — — 0.55 *
[0.01, 1.10] — —

IL-17a (RE) — — — — — — — — — −1.03 ***
[−1.62, −0.45] —

IL-23a (RE) — — — — — — — — — — −1.21 ***
[−1.76, −0.66]

Intercept −1.47 **
[−2.46, −0.48]

−0.35
[−1.34, 0.64]

1.27 **
[0.38, 2.16]

−4.44 ***
[−6.15, −2.73]

−0.85
[−2.09, 0.38]

0.27
[−0.94, 1.47]

0.20
[−0.75, 1.14]

0.16
[−0.61, 0.93]

−0.77
[−1.63, 0.08]

1.76 **
[0.69, 2.83]

2.39 ***
[1.24, 3.54]

N 100 100 100 100 100 100 100 100 100 100 100
AIC 130 142 131 89 141 142 142 142 138 128 117
BIC 135 147 137 94 146 148 148 148 144 133 122
C-statistic 0.69 0.53 0.72 0.89 0.59 0.52 0.53 0.56 0.62 0.74 0.79
R2 0.16 0.01 0.14 0.55 0.03 0.00 0.00 0.00 0.05 0.18 0.30

* p < 0.05, ** p < 0.01, *** p <0.001. Values are coefficients from logistic regression with 95% confidence intervals in brackets. Legend: EHOA = erosive osteoarthritis of the hand;
PsA = psoriatic arthritis; AIC = Akaike information criterion; BIC = Bayesian information criterion; RE = relative expression; R2 = Nagelkerke R2.
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Table 4. Ability of serum cytokines and adipokines to discriminate EHOA from PsA.

M12 M13 M14 M15 M16 M17 M18 M19 M20 M21

IL1-β (pg/mL) 0.01
[−0.05, 0.07]

IL-6 (pg/mL) 0.03 **
[0.01, 0.05]

TNF-α (pg/mL) 0.18 ***
[0.09, 0.27]

IL-17a (pg/mL) −0.01
[−0.04, 0.01]

IL-23a (pg/mL) −0.04 ***
[−0.05, −0.02]

Adiponectin
(µg/mL)

−0.03
[−0.07, 0.01]

Chemerin
(pg/mL)

−0.02 *
[−0.05, −0.01]

Leptin (pg/mL) −0.004 ***
[−0.006, −0.003]

Visfatin (ng/mL) −2.72 ***
[−3.77, −1.68]

Resistin (pg/mL) −0.05 ***
[−0.07, −0.03]

Intercept −0.25
[−1.61, 1.11]

−2.50 **
[−4.31, −0.70]

−28.72 ***
[−42.49, −14.95]

0.98
[−1.04, 3.00]

9.90 ***
[6.07, 13.72]

1.47
[−0.59, 3.52]

1.78 *
[0.13, 3.43]

8.78 ***
[5.39, 12.17]

6.29 ***
[3.90, 8.68]

6.91 ***
[4.47, 9.34]

N 100 100 100 100 100 100 100 100 100 100
AIC 142 134 34 142 92 141 137 81 86 63
BIC 148 139 39 147 97 146 143 86 91 68
C-statistic 0.55 0.67 0.98 0.54 0.87 0.56 0.68 0.91 0.89 0.95
Nagelkerke R2 0.00 0.11 0.88 0.01 0.53 0.03 0.07 0.61 0.58 0.73

* p < 0.05, ** p < 0.01, *** p < 0.001. Values are coefficients from logistic regression with 95% confidence intervals in brackets. Legend: EHOA = erosive osteoarthritis of the hand;
PsA = psoriatic arthritis.
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3. Discussion
Distinguishing between EHOA and PsA in the presence of peripheral arthritis can

be challenging for physicians managing musculoskeletal disorders. Both diseases are, in
fact, characterized by a prominent involvement of the distal IP joints of the hand and share
similar clinical features, such as joint swelling, pain, tenderness, and the development of
severe deformities with considerable functional limitations [9,12]. Moreover, the lack of
specific autoantibodies and the inconsistent increase in acute-phase reactants in PsA and in
EHOA make it more difficult to differentiate the two diseases [35,36]. Since the therapeutic
options for PsA and EHOA are very different, a correct early diagnosis is essential for the
success of the pharmacological treatments and to limit the progression of joint damage [12].
These considerations underscore the urgent need to identify novel, specific, and reliable
biomarkers that can enhance diagnostic accuracy.

In this study, we investigated the potential of a panel of miRNAs and pro-inflammatory
cytokines in PBMCs from patients with EHOA and PsA, as well as the serum levels of
a specific pattern of cytokines and adipokines, to differentiate between the two diseases.
In this study, we investigated the potential of a panel of miRNAs and pro-inflammatory
cytokines in PBMCs from patients with EHOA and PsA, as well as the serum levels of
a specific pattern of cytokines and adipokines, to differentiate between the two diseases.
Increasing evidence supports the critical role of miRNAs in the pathogenesis of several
musculoskeletal diseases, including PsA and OA. In recent years, circulating miRNAs have
emerged as potential biomarkers for diagnosing and predicting the prognosis of various
pathological conditions, including cardiovascular, neurological, oncological, metabolic,
and rheumatological diseases. In fact, miRNAs are highly stable in biological fluids and
resistant to endogenous ribonuclease activity, as well as to extreme conditions such as high
temperatures, long-term storage, and repeated freeze–thaw cycles. Additionally, circulating
miRNAs are easily accessible and can be measured with high sensitivity [21,26,34,37–40].

A recent study evaluated the profile of circulating miRNAs in 96 patients with EHOA,
73 patients with non-erosive HOA, and 69 HS [27]. Through a low-density array analysis of
a large series of miRNAs, followed by a two-phase validation process, the authors discov-
ered higher levels of miR-23a-3p, miR-146a-5p, and miR-652-3p in patients with non-erosive
HOA and EHOA while no differences were detected between the two HOA groups [27].
Moreover, the same miRNAs were positively correlated with the Australian/Canadian
Hand Osteoarthritis index (AUSCAN) sum score and with the AUSCAN score for pain.
Interestingly, miR-222-3p exhibited an inverse correlation with the Kallman score [27].
Auroux et al. evaluated the circulating miRNA signature in patients with erosive and
non-erosive HOA, showing a significant down-regulation of miR-196-5p in EHOA without
any association with clinical symptoms [28].

The utility of miRNAs as biomarkers in PsA is less extensively explored compared
to OA or other rheumatological diseases like RA or ankylosing spondylitis. The earliest
clinical study that investigated the expression profile of a specific pattern of miRNAs in a
PsA population was performed in 2017 [41]. The authors conducted a microarray analysis
to identify differentially expressed miRNAs in the PBMCs of patients with PsA compared
to HS. Among the identified miRNAs, miR-21-5p exhibited a significant up-regulation in
PsA patients. This miRNA was believed to serve as a marker for treatment response, as
its expression decreased after 12 weeks of treatment with methotrexate or etanercept and
was correlated with a reduction in the Disease Activity for Psoriatic Arthritis (DAPSA)
score [41]. A subsequent study analyzing the expression profile of miRNAs in patients
with active or inactive PsA revealed distinct miRNA expression profiles for each of the
two distinct clinical phases of the disease [42]. More recently, several studies identified
other miRNAs (miR-21, miR-23a, miR-26a, miR-130, miR-140, miR-146a, miR-151, miR-155,
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miR-181-a, miR-221, miR-223, let7-e, and miR-6891-3p) as potential biomarkers to diagnose
PsA and to monitor disease activity [23,25,26,43–45].

In a previous study, we explored the ability of a specific pattern of miRNAs
(miR-21, miR-140, miR-146a, miR-155, miR-181b, miR-223, and miR-let-7e) in distinguish-
ing PsA from RA [34]. Consistent with the current findings, we found a dysregulation of all
the examined miRNAs in patients with PsA compared to HS. In the present study, we found
a notable up-regulation in the gene expression of the considered miRNAs (miR-21, miR-140,
miR-146a, miR-155, miR-181b, miR-223) in patients with PsA and EHOA compared to
HS. Additionally, we observed a significant increase in the gene expression of miR-146a
in patients with PsA compared to EHOA, while miR-155 and miR-21 showed a higher
expression in EHOA compared to PsA.

In our experience, miR-155 stood out as the most effective miRNA in distinguishing
EHOA from PsA. MiR-155 has garnered considerable attention due to its involvement in
various pathological conditions. Dysregulation of miR-155 has been reported in many
inflammatory autoimmune diseases, including RA, systemic lupus erythematosus, multiple
sclerosis, Sjögren’s syndrome, systemic sclerosis, and inflammatory bowel disease [22,46].
Indeed, various studies have demonstrated that miR-155 is one of the most up-regulated
miRNAs in human OA cartilage and plays a crucial role in the pathogenesis of its disease by
regulating essential cellular mechanisms, including the proliferation, apoptosis, pyroptosis,
differentiation, growth, and migration of chondrocytes [47,48]. In OA, miR-155 was shown
to act through different signaling cascades, such as the mitogen-activated protein kinase
(MAPK) pathway, to regulate chondrocyte proliferation and apoptosis and contribute to
extracellular matrix degradation [49].

Clinical data on circulating levels of miR-155 in OA are limited to a few studies in
gonarthrosis. Our study is the first to explore the gene expression of miR-155 in EOHA and
our findings align with previous reports. Okuhara et al. [50] and Soyocak et al. [51] reported
an increased expression of miR-155 in the PBMCs of patients with knee OA compared to
healthy subjects. Both research groups also observed a correlation between miR-155 levels
and the later stages of the disease. Giannitti et al. further demonstrated that miR-155 could
serve as a reliable marker for therapeutic response in patients with knee OA treated with
mud bath therapy [52]. Taken together, these data suggest the broad relevance of miR-155
in the development and progression of osteoarthritis (OA) not only in the hand but also in
other joints. The up-regulation of miR-155 may partially explain our findings of the high
gene expression and elevated serum levels of cytokines IL-1β, IL-6, and TNF-α in EHOA.
As reported by O’Connell et al., this miRNA stimulates dendritic cells to produce specific
cytokines essential for the development of inflammatory T cells [53]. Further research
confirms that the up-regulation of miR-155 led to the production of pro-inflammatory
cytokines by targeting Src homology 2-containing inositol phosphatase-1 (SHIP-1), an
inhibitor of inflammation [54,55].

Moreover, we demonstrated for the first time that miR-21 is up-regulated in patients
with EHOA compared to HS and PsA patients. MiR-21 plays a crucial role in inflammation
and may represent a potential therapeutic target in OA [56,57]. Wang et al. found a
substantial increase in miR-21 levels in OA cartilage compared to cartilage from patients
who had experienced traumatic events without a history of OA [58]. Mir-21, abundant in
synovial tissue and fluid, may contribute to knee OA pain by activating Toll-like receptor
(TLR) 7 [59,60].

In agreement with the previous literature, we confirmed the up-regulation of miR-146a
in PsA patients compared to HS and its potential role as a biomarker of the disease [23,26,41].
Moreover, our findings suggest that miR-146a may be useful in discriminating EHOA
from PSA.
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Studies exploring gene expression and/or serum levels of inflammatory cytokines in
EHOA have yielded conflicting results, likely due to the diverse clinical characteristics of
the analyzed patients [61,62]. Recently, McAlindon et al. observed a strong and consistent
association between elevated serum levels of IL-7, a cytokine that induces inflammation,
cartilage destruction, and bone loss, and incident radiographic evidence of EHOA [63].

Surprisingly, our study found higher serum levels of TNF-α in EHOA compared to
PsA. Moreover, TNF-α could effectively discriminate EHOA from PsA. It is challenging
to explain these results, even though EHOA is characterized by clinical and radiographic
inflammatory hallmarks [64]. Regrettably, we did not conduct any ultrasound or magnetic
resonance imaging studies to assess the presence and severity of inflammation. Therefore,
we cannot entirely rule out the possibility that our results may be partially influenced
by the relatively low inflammatory activity in patients with PsA. Our findings regarding
serum levels of TNF-α in EHOA warrant further investigation in larger studies and with
appropriate imaging assessments. If confirmed, these findings could pave the way for novel
therapeutic perspectives, particularly for a targeted (precision) treatment of EHOA. Un-
fortunately, most of the currently available conventional and biological disease-modifying
anti-rheumatic drugs have failed to yield significant clinical benefits [9,65].

In line with the existing literature, our study underscores the crucial role of IL-17a and
IL-23a in the pathogenesis of PsA, as well as their potential as biomarkers and therapeutic
targets for the disease [66].

In the present study, we also analyzed a panel of adipokines and observed higher
levels of adiponectin, chemerin, leptin, resistin, and visfatin in patients with PsA compared
to HS. The literature on circulating adipokines in PsA and EHOA is limited and frequently
contradictory [30,32,63,67]. This may be due to differences in patient demographic and
clinical features. Several factors, such as age, gender, smoking habits, disease duration,
radiographic features, obesity, metabolic syndrome, and concomitant comorbidities, are
indeed known to affect circulating adipokines [68,69].

In the present study, lnCRP had greater discriminatory power compared to all miRNAs
in distinguishing EHOA from PsA. This finding aligns with a substantial body of the
literature, as CRP is a well-established non-specific marker of active inflammation. CRP
has been suggested as a laboratory marker for PsA and is included in the most used
response criteria for PsA, such as the ACR response and the Disease Activity Score 28
with CRP (DAS28-CRP) [70]. However, the association of CRP with EHOA remains a
subject of debate. Some studies have reported higher CRP levels in EHOA compared to
its non-erosive counterpart, while others have observed no significant differences, or even
opposite results [71,72]. We found that the combination of miR-155 with ln-CRP enhanced
the discriminatory ability of EHOA from PsA.

Overall, the present study supported the role of MiRNAs as promising biomarkers for
distinguishing EHOA from PsA. However, their practical application is still limited by sev-
eral factors, including the absence of a standardized protocol for detecting and quantifying
circulating miRNAs. This could explain the significant variability and heterogeneity of the
results reported in the literature [18,24]. Furthermore, incorporating miRNA biomarkers
into routine practice necessitates an evaluation of their feasibility and cost-effectiveness
compared to other laboratory tests or imaging techniques.

The present study had some limitations. Firstly, the sample size was relatively small,
owing to the stringent inclusion criteria and the need to minimize any potential interference
from pharmacological agents on miRNAs, cytokines, and adipokines. Secondly, the absence
of patients with PsA without psoriasis, i.e., “sine psoriasis”, and the lack of comparison
with a group exclusively affected by cutaneous lesions, further limited the study’s gen-
eralizability. Thirdly, despite our best efforts to match patients and controls, the median
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age differed among the study groups. Lastly, the case–control design, while an effective
approach for generating hypotheses, required further validation through cross-sectional
and possibly cohort studies where the diagnosis is not yet known [73].

In conclusion, we identified miR-155 as a biomarker capable of distinguishing EHOA
from PsA. When combined with ln-CRP, its diagnostic performance is improved. However,
external validation of our findings is necessary to confirm that these biomarkers offer a
simple and reliable tool for accurate diagnosis, particularly in the early stages of the disease.

4. Materials and Methods
4.1. Study Design

From September 2018 to December 2021, a case–control study was conducted on
outpatients seen at the Center for the Diagnosis and Management of Hand Osteoarthritis,
Rheumatology Unit of the Azienda Ospedaliera Universitaria Senese (Siena-Italy). All
participants gave written informed consent, and their records were anonymized before
data analysis. The study was approved by the Local Ethical Committee (decision number
14047-2018) and was conducted in accordance with the Declaration of Helsinki. The study
was registered on http://www.clinicaltrials.gov with number NCT05683769 (accessed on
1 September 2018).

4.2. Study Participants

The study involved 50 patients with EHOA, 50 with PsA, and 50 HS. The patients with
PsA and the HS had been studied before [34]. As in our previous study [34], the HS were
analyzed to obtain an idea of the values of the biomarkers in a healthy population. The
case–control study was conducted to determine whether PsA can be distinguished from
EHOA by utilizing such biomarkers. To accomplish this objective, “cases” were defined as
patients with EHOA and “controls” as those with PsA.

The inclusion criteria for PsA patients and for HS were reported in our previous
study [34]. In detail, patients with PsA who met the CASPAR classification criteria and
exhibited a peripheral arthritis pattern were included in the study [16]. All the subjects had
at least a moderate degree of disease activity defined by DAPSA and received a diagnosis of
psoriasis. They were naïve to conventional and biologic diseases-modifying anti-rheumatic
drugs and were only undergoing topical treatment for cutaneous lesions. The diagnosis of
EHOA was based on the American College of Rheumatology criteria for HOA [74] and the
presence of classical central erosion in at least two IP joints [7,75] in a blind observation.
Disagreements were resolved by a third examiner (J-Y.R.). The Kallman score assessed
osteophytes (0–3) and lateral deformities (0–1) in 20 joints; joint space narrowing (0–3),
subchondral sclerosis (0–1), and subchondral cysts (0–1) in 22 joints; and erosions (0–1) in
18 joints, resulting in a score ranging from 0 to 198 [76].

Exclusion criteria were inflammatory rheumatic and bowel diseases, autoimmune
and endocrine disorders, and other rheumatic and non-rheumatic conditions that could
affect the functionality of the peripheral joints, such as tendinopathies, carpal tunnel
syndrome, Dupuytren’s contracture, collagen and neurological disorders, or arthroplasty of
the upper and lower limbs. Other exclusion criteria were diabetes mellitus, liver and kidney
diseases, acute or chronic infectious disorders, cancer within the past 5 years, pregnancy
and breastfeeding, a BMI > 30 kg/m2, the use of anti-obesity medications, and recent
trauma or surgery to the affected joints. Patients with pure or mixed axial involvement
were also excluded. Additionally, patients who had received systemic or intra-articular
(i.a.) corticosteroids or i.a. hyaluronic acid within the past 3 months, or intra-muscular or
intra-venous bisphosphonates within the past 6 months, were also excluded [77].

http://www.clinicaltrials.gov
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4.3. Clinical Examination

The clinical examination was performed by two expert rheumatologists (AF, ST).
Weight and height were measured following international guidelines [78]. BMI was cal-
culated as weight (kg)/height (m)2 and classified according to the National Institutes of
Health [79].

4.4. Questionnaires and Scales

The global joint pain was calculated using a 0 to 100 mm visual analog scale (VAS),
with 0 representing the absence of pain and 100 the maximum imaginable pain. The
general health status was measured using the Italian version of the HAQ. HAQ is a self-
administered questionnaire developed to measure disability and consists of 8 sections:
dressing, arising, eating, walking, hygiene, reach, grip, and activities, and ranges from
0 to 3, with 3 corresponding to the highest level of disability [80,81]. For EHOA patients,
the functional disability of the hand was assessed using the Italian version of the functional
index for hand osteoarthritis (FIHOA). The score ranges from 0 to 30, with higher scores
indicating the most severe functional impairment [82]. Moreover, the Kallman score was
used for radiological evaluation [76]. The disease activity of PsA patients was evaluated
using the DAPSA score. The cut points for low and high disease activity were set at
18.5 and 45.1, respectively [83]. The severity and extent of skin psoriasis in PsA patients
was measured using the Psoriasis Area Severity Index (PASI), which has a maximum score
of 72 [84].

4.5. Laboratory Analysis

Blood samples were drawn from an antecubital vein in the morning after an overnight
fast. A portion of whole blood was immediately centrifuged to evaluate ESR, CRP, total
cholesterol, HDL cholesterol, LDL cholesterol, triglycerides, and glucose. IgG, IgA, and IgM
RF were assessed using commercial ELISA kits (Orgentec Diagnostica, Mainz, Germany).
ACPAs were measured using the FEIA technique with the EliA system (Phadia Diagnostics,
Freiburg, Germany) [35].

Serum samples were stored at −80 ◦C for the measurement of cytokines and
adipokines using ELISA.

The isolation of PBMCs from whole blood was performed using the standard classi-
cal method of Ficoll density gradient centrifugation (Ficoll-Paque GE HealthCare, Little
Chalfont, Buckinghamshire, UK), as per the manufacturer’s instructions [34,85,86].

4.6. MiRNA and Cytokine Expression Analysis

Total RNA was extracted using the TriPure Isolation Reagent (Euroclone, Milan, Italy),
following the manufacturer’s instructions. The concentration, purity, and integrity of the
RNA were determined using a Nanodrop-1000 (Celbio, Milan, Italy), and their quality
was verified by electrophoresis on an agarose gel (FlashGel System, Lonza, Rockland,
ME, USA).

A total of 500 ng of RNA were reverse-transcribed into cDNA using a commercial
kit for miRNAs (Qiagen, Hilden, Germany), as per the manufacturer’s instructions. The
obtained cDNA was processed through real-time PCR using a kit that utilized the SYBR
Green assay (Qiagen, Hilden, Germany). All PCR reactions were prepared in glass capil-
laries and analyzed using a LightCycler 1.0 instrument (Roche Molecular Biochemicals,
Mannheim, Germany) coupled with LightCycler software Version 3.5. The list of primers
employed for the PCR reactions is provided in Supplementary Table S2.

To verify the correct amplification of the PCR products, the analysis of the dissociation
curves was performed to visualize the amplicon lengths in agarose gel. The Ct values
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and efficiency of the primer set were evaluated and converted into the relative expression
(RE) [87,88]. Data normalization was assessed using Small Nucleolar RNA, C/D Box 25
(SNORD-25) as a housekeeping gene for miRNAs, and Actin Beta (ACTB) as a housekeeping
gene for target genes [34,89].

4.7. Serum Cytokines and Adipokines

The methods for the of measurement of cytokines and adipokines have been reported
in detail elsewhere [34].

Serum levels of IL-1β, IL-6, and TNF-α were determined using a Human Picokine
ELISA kit (Boster Biological Technology, Pleasanton, CA, USA). The IL-1β kit had a sensitiv-
ity of 0.15 pg/mL, with inter- and intra-assay coefficients of variation (CVs) ranging from
5.7% to 8.9%. The IL-6 kit had a sensitivity of 0.3 pg/mL, with inter- and intra-assay CVs
of 7.2% to 8.6%. The TNF-α kit had a sensitivity of 0.1 pg/mL, with inter- and intra-assay
CVs of 5.4% to 6.4%.

Serum IL-17a was measured using the Cymax Human IL-17a ELISA kit (AbFRONTIER,
Vinci-Biochem, Firenze, Italy), with a sensitivity of 2.134 pg/mL and inter- and intra-assay
CVs of 4.42% to 6.35%.

Serum IL-23a was measured using the Human IL-23 ELISA Kit ab64708 (Abcam, Milan,
Italy), with a sensitivity of 20 pg/mL and a detection range of 156.2 to 5000 pg/mL.

Serum adiponectin was measured using the Human Adiponectin ELISA kit (AdipoGen
Life Sciences, Liestal, Switzerland), with a sensitivity of 100 pg/mL and inter- and intra-
assay CVs of 2.8% to 5.5%.

Serum chemerin was measured using the Human Picokine ELISA kit (Boster Biological
Technology, Pleasanton, CA, USA), with a sensitivity of 20 pg/mL and inter- and intra-assay
CVs of 6.0% to 9.3% [34].

Serum leptin was measured using the Human Picokine ELISA kit (Boster Biological
Technology, Pleasanton, CA, USA), with a sensitivity of 10 pg/mL and inter- and intra-assay
CVs of 7.0–8.4% and 5.2–7.6%, respectively.

Serum resistin was measured using the Human Resistin ELISA kit (AdipoGen Life
Sciences, Liestal, Switzerland), with a sensitivity of 3 pg/mL and inter- and intra-assay
CVs of 4.20–7.20% and 2.86–5.17%, respectively [34].

Lastly, serum visfatin was measured using the Human Nampt (Visfatin/PBEF) ELISA
kit (AdipoGen Life Sciences, Liestal, Switzerland), with a sensitivity of 30 pg/mL and inter-
and intra-assay CVs of 4.66–7.40% and 2.31–9.11%, respectively.

4.8. Statistical Analysis

Most continuous variables were not Gaussian-distributed, and all are reported as the
median (50th percentile) and interquartile interval (IQI, 25th and 75th percentile). Discrete
variables are reported as the number and proportion of subjects with the characteristic
of interest.

Between-group comparisons of continuous variables were performed using the Mann–
Whitney U-test and those of discrete variables using Pearson’s Chi-square test.

The association between miRNAs, cytokines, and adipokines was evaluated using
Spearman’s rank correlation coefficient.

CRP was transformed by adding 0.01 to its value, which ranged from 0 to 2.9, and
then log-transformed by taking the natural logarithm (ln) of the resultant value. This
transformation reduced the skewness of CRP and allowed for the assumptions made by
the uni-variable and bi-variable logistic regression models which used it as a predictor to
be met.
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Uni-variable logistic regression models were used to evaluate the ability of contin-
uous miRNAs to discriminate EHOA from PsA [90]. Six prespecified bi-variable logistic
regression models were used to evaluate the ability of each miRNA to discriminate EHOA
from PsA after correction for a potential predictor, i.e., sex (discrete: 0 = no; 1 = yes), age
(continuous, years), disease duration (continuous, months), BMI (continuous, kg/m2), ten-
der joints (continuous), and ln-CRP (continuous, U/L) [34,90]. We evaluated the linearity
of the logits using scatterplots and uni- and multi-variable fractional polynomials [34,91].
There was no or a very modest increase in model fit using logit transformations, so that
logits were kept linear and were modeled as such.

We compared the logistic regression models using the Akaike information criterion
(AIC) and the Bayesian information criterion (BIC) and additionally calculated the Nagelk-
erke pseudo-R2 and Harrell’s C-statistic. Statistical analysis was performed using Stata 18.5
(Stata Corporation, College Station, TX, USA).

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ijms26104621/s1.
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