Body water distribution in highlanders versus lowlanders

G. Bedogni a; N. Battistini a; S. Severi a; F. Facchini ab; D. Pettener ab; G. Fiori ab

a Modena University. Modena. Italy
b Bologna University. Bologna. Italy

Online Publication Date: 01 December 1997

URL: http://dx.doi.org/10.1080/03014469700005292

PLEASE SCROLL DOWN FOR ARTICLE

This article maybe used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

© Taylor and Francis 2007
Body water distribution in highlanders versus lowlanders

G. Bedogni, N. Battistini, S. Severi, F. Facchini†, D. Pettener† and G. Fiori†

Modena University, Modena, Italy
†Bologna University, Bologna, Italy

Received 18 February 1997

Summary. Acute exposure to high altitude produces characteristic changes in body water distribution from which acclimatized individuals seem to be spared. However, it has been suggested that body water distribution may be different in highlanders (HL) as compared to lowlanders (LL). We studied the distribution of total body water (TBW) between extracellular water (ECW) and intracellular water (ICW) in a group of 20 HL (3200 m above sea level) versus one of 20 LL (900 m above sea level). Subjects were matched for ethnic group (Kirghiz), sex (male), weight (Wt), height and body mass index. TBW: Wt and ECW:TBW were not different in HL as compared to LL (mean ± SD, 58.3 ± 3.0% versus 58.9 ± 4.2% and 40.7 ± 2.2% versus 40.7 ± 2.2%; p = n.s. for both). This study does not support the hypothesis that body water distribution is different in HL as compared to LL.

1. Introduction

Acute exposure to high altitude produces a loss of water from the intracellular and extracellular spaces (Hannon, Chinn and Shields, 1971, Krzywicki, Consolazio, Johnson, Nielsen and Baenhart 1971, Frayser, Rennie, Gray and Houston 1975, Jain, Bardhan, Swamy, Krishna and Nayar 1980). The dehydration which ensues — especially the intracellular dehydration — may play a role in the pathogenesis of the so-called 'mountain sickness' which affects people ascending rapidly to high altitudes (Withey, Milledge, Minty, Bryson, Luff, Older and Beeley 1983). These events, which are probably triggered by cellular hypoxia, do not seem to occur in acclimatized subjects (Withey et al. 1983, Ward, Milledge and West 1989).

It would therefore be of interest to know whether individuals native and permanently living at high altitude (> 2500 m) show modifications of body water distribution between intracellular and extracellular spaces compared to those living at low altitude. Unfortunately, the distribution of total body water (TBW) between extracellular water (ECW) and intracellular water (ICW) has not been studied thoroughly in high-altitude residents. In a classic study on Peruvians, Picón-Realguí, Lozano and Valdivieso (1961) showed an increase in ECW per kg weight (Wt) in a group of highlanders (HL) versus one of lowlanders (LL). However, the groups were not strictly comparable, and differences in physical characteristics may have influenced the results of the study.

We studied body water distribution in HL and LL Kirghiz as a part of a larger research project on human adaptability to high altitudes (CAHAP, Central Asia High Altitude People), carried out in collaboration with the Academy of Sciences of Kazakhstan (Battistini, Facchini, Bedogni, Severi, Fiori and Pettener 1995a, Facchini, Pettener, Rimondi, Sichimbaeva, Riva, Salvi, Pretolani and Fiori 1997, Pettener, Facchini, Luiselli, Toselli, Rimondi, Ismagulova, Sichimbaeva, Ismagulov and Fiori 1997).
2. Materials and methods

2.1. The Kirghiz population

Kirghizs are a Turkish-speaking population (Altaic linguistic family) that settled in the Pamir and Tien Shan mountains over the last four to five centuries. From an anthropological point of view they are a Turko-Mongolic population and are similar to Kazakhs, the other high-altitude population of Central Asia (Alekseev and Gochman 1983, Battistini et al. 1995a). The similarity between Kirghizs and Kazakhs is confirmed by recent genetic studies (Pettener et al. 1997).

2.2. Subjects

We compared a group of Kirghizs living in Sary Tash village (3200 m above sea level) with a group living in Talas (900 m). Sary Tash is a village a few kilometres from the border with Tajikistan, in the heart of the Pamir mountains. The local population numbers around 1500 and is largely concentrated in the village or scattered in outlying areas. Sary Tash is extremely isolated, especially during the winter months when it is cut off by snow. The local economy is based on grazing sheep and goats, or raising yaks and horses that are moved to the mountain pastures during the summer. The village of Talas is in the most northerly section of Kirghizstan, along the trade routes to Kazakhstan and Uzbekistan, important since ancient times (the 'silk route'); the local economy is based on farming and cattle raising.

Twenty H1 of Sary Tash were cross-matched for genetic group (Kirghiz), sex (male), age, Wt, Ht, and body mass index (BMI) to 20 LL of Talas. All the subjects underwent a medical examination and blood analyses to exclude the presence of disease. The study protocol had been approved by the Ethical Committee at Modena University and all subjects gave informed consent.

2.3. Anthropometry

Wt, Ht, arm circumference (AC) and skinfolds [triceps (TSF), biceps (BSF), subscapular (SSF) and suprailiac (SISF)] were measured following the Anthropometric Standardization Reference Manual (Lohman, Roche and Martorell 1988). BMI was calculated as Wt (kg)/Ht² (m). Arm fat area (AFA) and arm muscle area (AMA) were calculated from AC and TSF as described by Frisancho (1990). The sum of TSF, BSF, SSF and SISF (4SF) was calculated according to Durnin and Womersley (1974).

2.4. TBW and ECW assessment

TBW and ECW were measured by deuterium oxide (D₂O) and bromide (Br) dilution, respectively. A preliminary study aimed at establishing the equilibration time of D₂O and Br was performed on the plasma of three unselected subjects. In all cases D₂O and Br reached the equilibrium within 3-6 h after their administration, a time similar to that observed in healthy Caucasian and non-Caucasian (Kazakh) subjects (Battistini et al. 1995a). Subjects had fasted for at least 8 h before receiving orally a solution made up of 10 g of D₂O, 5 g of Br and 25 g of drinkable water. Based on the results of the preliminary study, plasma samples were collected before and 3-5 h after the administration of this solution, as described in detail elsewhere (Battistini, Severi, Brambilla, Virgili, Manzoni, Beccaria and Chiumello 1995b). D₂O concentration was measured by spectrophotometry according to the method of Lukaski and Johnson (1985). TBW was calculated as deuterium dilution space ×0.95, taking into account non-aqueous distribution of D₂O (Forbes 1987,
Heymsfield and Waki (1991). Br concentration was measured by HPLC according to the method of Wong, Sheng, Morkebey, Kosanovich, Clarke and Klein (1989). ECW was calculated as Br dilution space × 0.90 × 0.95, taking into account non-extracellular distribution of Br and Donnan’s effect, respectively (Forbes 1987). ICW was calculated as the difference between TBW and ECW. Body hydration (TBW%) was calculated as TBW per kg of Wt. ECW% was calculated as ECW per litre of TBW.

2.5. Statistics

Differences in body composition between HL and LL were evaluated by unpaired (two-tailed) t-tests. The significance level was set to a value of \(p < 0.05 \). Values are presented as mean ± SD.

3. Results

The characteristics of the subjects are given in table 1. As a result of the matching procedure, age, Wt, Ht and BMI were similar in HL and LL (\(p = \text{n.s.} \)). AMA was 10% lower in HL than LL (\(p = \text{n.s.} \)); AFA and 4SF were respectively 30% and 25% lower in HL than LL (\(p < 0.005 \) for both). These differences are similar to those observed between HL and LL in previous studies of populations from Central Asia (Facchin, Toselli, Fiori, Ismagulova and Pettener 1997). TBW, ECW and ICW were similar in HL and LL both as absolute and relative values (\(p = \text{n.s.} \)).

4. Discussion

Acute exposure to high altitude produces characteristic changes in body water distribution from which acclimatized individuals seem to be spared (Ward et al. 1989). However, Picón-Reátegui et al. (1961) detected an increase in ECW/Wt in gold-miners living at 4500 m (14 900 ft) versus medical students living at sea level [mean ± SEM, 17.9 ± 0.3% versus 16.4 ± 0.3%, \(p < 0.01 \)]. To our knowledge this is the only study of body water distribution performed in HL. Although it shows that a relative expansion of ECW may occur in HL, the results may have been influenced

<table>
<thead>
<tr>
<th>Subject characteristics of highlanders (HL) and lowlanders (LL).</th>
</tr>
</thead>
<tbody>
<tr>
<td>HL (n = 20)</td>
</tr>
<tr>
<td>Age (years)</td>
</tr>
<tr>
<td>Wt (kg)</td>
</tr>
<tr>
<td>Ht (cm)</td>
</tr>
<tr>
<td>BMI (kg/m²)</td>
</tr>
<tr>
<td>AMA (cm²)</td>
</tr>
<tr>
<td>AFA (cm²)</td>
</tr>
<tr>
<td>4SF (mm)</td>
</tr>
<tr>
<td>TBW (l)</td>
</tr>
<tr>
<td>ECW (l)</td>
</tr>
<tr>
<td>TBW% (%)</td>
</tr>
<tr>
<td>ECW% (%)</td>
</tr>
<tr>
<td>ICW:% (%)</td>
</tr>
</tbody>
</table>

*\(p < 0.005 \) versus HL.

Abbreviations: Wt = weight; Ht = height; BMI = body mass index; AMA = arm muscle area; AFA = arm fat area; 4SF = Durnin and Womersley (1974) sum of four skinfolds; TBW = total body water; ECW = extracellular water; TBW% = TBW/Wt; ECW% = ECW/TBW; ECW/ICW = extracellular to intracellular water ratio.
by the different physical characteristics of the enrolled subjects. For example, Wt was 14\% lower in gold-miners as compared to medical students (mean \pm SEM, 54.3 \pm 1.1 kg versus 62.5 \pm 1.4 kg, \(p < 0.001 \)).

Therefore, in our study, we tried to match HL and LL for ethnic group, sex, age, Wt, Ht and BMI. Although we controlled for the effects of race by selecting subjects with the same ethnic background, it was not possible to match HL and LL for socioeconomic status and dietary habits because these are heavily influenced by the environmental conditions associated with low and high altitudes (Facchini et al. 1997). However, the occupational activity of our HL and LL was similar (shepherds versus cattle breeders or farmers). Moreover, Wt, Ht and BMI reflect long-term changes in nutritional status so that matching for these variables was expected at least to reduce the influence of nutritional status on body water distribution between ECW and ICW (Shetty 1995).

Contrary to the results of Picón-Reaitectgui and colleagues, we were not able to detect significant differences in body water distribution in HL versus LL (Table 1). This discrepancy may be due in part to the fact that we evaluated TBW and ECW by \(^{2}D_{2}O \) and Br dilution, as compared to the measurement of antipyrene and sucrose clearances employed by these authors. Interestingly, while the mean values of ECW and ECW/ICW were remarkably similar in our HL and LL, the CV were twice as high in the former, indicating a larger inter-individual variability in body water distribution for HL.

It should be noted that AFA and 4SF were significantly lower in HL than LL. However, the similarity in TBW\% and ECW\% between HL and LL argues against the possibility of physiologically important differences in fat mass between these subjects.

The results of the present study are in agreement with those of a previous one in which Kazakhs living at 2100 m on the Tien Shan mountains were shown to have values of TBW\% (60\%) and ECW\% (39\%) similar to Caucasian reference subjects (Battistini et al. 1995a).

In conclusion, our study suggests that TBW\% and ECW\% are similar in native HL and LL. This is in agreement with the suggestion that acclimatization may reduce or eliminate the changes in body water distribution that occur in people ascending to high altitude (Withey et al. 1983, Ward et al. 1989). More detailed body composition studies are needed to ascertain whether the higher variability in ECW and ECW:ICW shown by HL as compared to LL can be considered an effect of the high-altitude environment.

References

Address for correspondence: N. Buttini, Human Nutrition Chair, Department of Biomedical Sciences, Faculty of Medicine & Surgery, Modena University, Via Campi 287, 41100 Modena, Italy.
Body water distribution in highlanders versus lowlanders

eau intra-cellulaire (eic) dans un groupe de 20 montagnards (à l'altitude de 3200m) par rapport à un groupe de 20 personnes de basse altitude (900m). Les sujets étaient appariés en fonction du groupe ethnique (Kirghiz), du sexe (masculin), du poids, de la stature et de l'indice de masse corporelle. ECT/ poids et EEC/ECT n'étaient pas différentes dans les deux groupes (moy. ± e.t., 59.5 ± 5.0% contre 56.0 ± 4.2%; p = ns et 40.5 ± 4.2% contre 40.7 ± 2.2%; p = ns). Cette étude n'est pas favorable à l'hypothèse d'une différence de la distribution d'eau corporelle totale entre les montagnards et les habitants des plaines.